ARGO, the extended platform for managing and monitoring the life cycle of infrastructures. The case of Autostrade per l'Italia.

Paolo Guarnieri Head of Business Development MOVYON

About us

We are leaders in the development and integration of ITS Solutions, Tolling and Infrastructure Management and Autostrade per Italia's center of excellence for research and innovation.

We are digital engineers for mobility: we design, integrate and implement innovative solutions to design the future, which for us is already intelligent, sustainable and powered by an invisible but ever-present technology.

The challenge

Critical infrastructures like bridges, need to be inspected and maintained throughout their life-cycle to ensure their safety and serviceability.

The infrastructure inspection and maintenance processes have evolved over time, passing from manual inspections to inspections carried out partly manually and partly supported by technological aid.

Emerging technologies can be applied to support proactive monitoring and maintenance processes.

Main Goals

Full digitization of inspection process

Transparency and data control

Increased
productivity and
efficiency of
inspection processes

Health monitoring of infrastructures

Modular and scalable platform

Analytics and reporting on assets and defects

ARGO

is the extended
technological platform
for managing and monitoring
infrastructure life cycle.
All the potential
of Digital Engineering
in a single solution

Autostrade per l'Italia Group

The largest toll road operator in Europe

2,855 km motorway network

2,7 M daily users

2,1 M daily vehicle transits

7.700 employees

motorway concessions

422 km tunnels

218 service areas

271 toll stations

2,097 bridges and viaducts **1,947** ASPI

16 toll higway

3,0 bn operating revenues

630 M **EBITDA**

517 M operating cash flow

575 M investiments in operations

1,8 bn equity as of 31.12.2020

Digital Inventory

Digital archive of infrastructures based on IBM Maximo technology

4 levels hierarchy

Data Governance models, data and quality information control 2,000

bridges

1,800

overpasses

650,000

components

Inspection Process

ARGO allows planning inspections and maintenance activities with near real time updates

In 2021

2,000

inspections

150,000

photographs

In 2022

8,000

inspections planned

THE INSPECTION PROCEDURE

Add the defect or its absence for each infrastructure's component

For each defect, associate photographs and precise geo localized positioning on each components

3

In order to complete the inspection, inspect all components

BIM for helping navigating the infrastructure 5

The digital signature by the inspector and the complete tracking of the activity performed

Digital Twin

Drones are equipped with **high-definition** cameras and LIDAR lasers

3d-scan of viaduct turned into millions of georeferenced points associated to **each component**

Digital Twin integrated with the existing simplified BIM

The inspector is able to carry out inspections remotely

Artificial Intelligence for Damage Recognition

The operator's decisions are supported by the applications of **Image Recognition** algorithms. Timely analysis of pictures and identification of defects

Monitoring and IoT

13 Types of sensors

630 sensors installed

Defined the **optimal layout** of the monitoring system

Identified most significant structural parameters

Monitoring the dynamic and static behavior of the structure as well as global and local phenomena

IoT architecture and interface

Monitor Manager

All in a single integrated platform

Digital Inventory

Inspection Process

Cost and Time Optimization

Structure Assessment

Maintenance Planning

Deterioration Modeling

Predictive Models

Thank you

